Direct and indirect Z-scheme heterostructure-coupled photosystem enabling cooperation of CO2 reduction and H2O oxidation

367Citations
Citations of this article
195Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The stoichiometric photocatalytic reaction of CO2 with H2O is one of the great challenges in photocatalysis. Here, we construct a Cu2O-Pt/SiC/IrOx composite by a controlled photodeposition and then an artificial photosynthetic system with Nafion membrane as diaphragm separating reduction and oxidation half-reactions. The artificial system exhibits excellent photocatalytic performance for CO2 reduction to HCOOH and H2O oxidation to O2 under visible light irradiation. The yields of HCOOH and O2 meet almost stoichiometric ratio and are as high as 896.7 and 440.7 μmol g−1 h−1, respectively. The high efficiencies of CO2 reduction and H2O oxidation in the artificial system are attributed to both the direct Z-scheme electronic structure of Cu2O-Pt/SiC/IrOx and the indirect Z-scheme spatially separated reduction and oxidation units, which greatly prolong lifetime of photogenerated electrons and holes and prevent the backward reaction of products. This work provides an effective and feasible strategy to increase the efficiency of artificial photosynthesis.

Cite

CITATION STYLE

APA

Wang, Y., Shang, X., Shen, J., Zhang, Z., Wang, D., Lin, J., … Li, C. (2020). Direct and indirect Z-scheme heterostructure-coupled photosystem enabling cooperation of CO2 reduction and H2O oxidation. Nature Communications, 11(1). https://doi.org/10.1038/s41467-020-16742-3

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free