Abstract
Ecofriendly N-heterocyclic carbene (NHC) organocatalysis can control the N1-functionalization (aza-Michael addition) and C3-functionalization (Morita-Baylis-Hillman reaction, MBH) of isatins in the absence of (1) a protecting group, (2) a stoichiometric reagent, and (3) heat energy. The challengeable N1-functionalization of N-unsubstituted isatins into N-substituted (NS) isatins was realized through 10 mol % NHC and 10 mol % 1,8-diazabicyclo[5.4.0]undec-7-ene catalysts within 10 min with up to 98% isolation yield. The subsequent MBH adducts of as-synthesized NS-isatins (N1/C3-functionalization) was perfectly acquired in 10 mol % NHC and 10 mol % 1,4-diazabicyclo[2.2.2]octane catalysis within 30 min with superiority to C3/N1-functionalization (MBH/aza-Michael). For guiding the application to a versatile druggable isatin library, the NHC catalysis was compared with reported functionalization of isatins in view of green chemistry principles including solvent scoring of ACS GCI pharmaceutical roundtable, E-factor, atom economy, and so on.
Cite
CITATION STYLE
Mudithanapelli, C., Vasam, C. S., Vadde, R., & Kim, M. H. (2018). Highly Efficient and Practical N-Heterocyclic Carbene Organocatalyzed Chemoselective N1/C3-Functionalization of Isatins with Green Chemistry Principles. ACS Omega, 3(12), 17646–17655. https://doi.org/10.1021/acsomega.8b02361
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.