Abstract
A statistical downscaling approach for improving extreme rainfall simulation was proposed to predict the daily rainfalls at Shih-Men Reservoir catchment in northern Taiwan. The structure of the proposed downscaling approach is composed of two parts: the rainfall-state classification and the regression for rainfall-amount prediction. Predictors of classification and regression methods were selected from the large-scale climate variables of the NCEP reanalysis data based on statistical tests. The data during 1964-1999 and 2000-2013 were used for calibration and validation, respectively. Three classification methods, including linear discriminant analysis (LDA), random forest (RF), and support vector classification (SVC), were adopted for rainfall-state classification and their performances were compared. After rainfall-state classification, the least square support vector regression (LS-SVR) was used for rainfall-amount prediction for different rainfall states. Two rainfall states (i.e., dry day and wet day) and three rainfall states (dry day, non-extreme-rainfall day, and extreme-rainfall day) were defined and compared for judging their downscaling performances. The results show that RF outperforms LDA and SVC for rainfall-state classification. Using RF for three-rainfall-states classification and LS-SVR for rainfall-amount prediction can improve the extreme rainfall downscaling.
Author supplied keywords
Cite
CITATION STYLE
Pham, Q. B., Yang, T. C., Kuo, C. M., Tseng, H. W., & Yu, P. S. (2019). Combing random forest and least square support vector regression for improving extreme rainfall downscaling. Water (Switzerland), 11(3). https://doi.org/10.3390/w11030451
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.