Dark matter condensates as highly nonlocal solitons: instability in the Schwarzschild metric and laboratory analog

0Citations
Citations of this article
5Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Theories on the bosonic nature of dark matter are a promising alternative to the cold dark matter model. Here we consider a dark matter halo in the state of a Bose-Einstein condensate (BEC), subject to the gravitation of a black hole. In the low energy limit, we bring together the general relativity in the Schwarzschild metric and the quantum description of the BEC. The model is solvable in the Fermi normal coordinates with the so called highly nonlocal approximation and describes tidal deformations in the condensate wave function. The black hole deforms the localized condensate until the attraction of the compact object overcomes the self-gravitation and destabilizes the solitonic dark matter. Moreover, the model can be implemented as a gravitational analog in the laboratory; the time-dependent potential generated by the galactic black hole can be mimicked by an optical trap acting on a conventional condensate. The results open the way to new laboratory simulators for quantum gravitational effects.

Cite

CITATION STYLE

APA

Dieli, L., & Conti, C. (2024). Dark matter condensates as highly nonlocal solitons: instability in the Schwarzschild metric and laboratory analog. New Journal of Physics, 26(3). https://doi.org/10.1088/1367-2630/ad2bb0

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free