An AU-rich sequence in the 3'-UTR of plasminogen activator inhibitor type 2 (PAI-2) mRNA promotes PAI-2 mRNA decay and provides a binding site for nuclear HuR

64Citations
Citations of this article
16Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The plasminogen activator inhibitor type 2 (PAI-2) gene is regulated by transcriptional and post-transcriptional processes. We have previously shown that insertion of the 3'-untranslated region (3'-UTR) of PAI-2 mRNA into the 3'-UTR of a β-globin reporter mRNA reduces constitutive β-globin mRNA expression and that this requires, at least in part, an AU-rich motif. Here we have directly assessed the role of this motif in PAI-2 mRNA stability using both chimeric and non-chimeric reporter systems. We first show that the full-length PAI-2 mRNA is indeed unstable with a half-life of 1 h. Using the c-fos promoter-driven human growth hormone (HGH) mRNA as a reporter, we demonstrate that the 580 nt 3'-UTR of PAI-2 accelerates chimeric HGH mRNA decay in a process which is dependent on the intact AU-rich sequence. Furthermore, disruption of this motif within a constitutively expressed PAI-2 cDNA produces a 2.5- and 2.7-fold increase in PAI-2 mRNA and protein levels in HT-1080 cells, respectively. RNA electrophoretic mobility shift and supershift assays indicate that this motif provides a specific binding site for cellular proteins that include nuclear HuR. Taken together, these data show that a correlation exists between the binding of HuR to the AU-rich motif in vitro and the destabilizing properties conferred by this sequence in vivo.

Cite

CITATION STYLE

APA

Maurer, F., Tierney, M., & Medcalf, R. L. (1999). An AU-rich sequence in the 3’-UTR of plasminogen activator inhibitor type 2 (PAI-2) mRNA promotes PAI-2 mRNA decay and provides a binding site for nuclear HuR. Nucleic Acids Research, 27(7), 1664–1673. https://doi.org/10.1093/nar/27.7.1664

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free