Defects in skeletal muscle subsarcolemmal mitochondria in a non-obese model of type 2 diabetes mellitus

25Citations
Citations of this article
30Readers
Mendeley users who have this article in their library.

Abstract

Skeletal muscle resistance to insulin is related to accumulation of lipid-derived products, but it is not clear whether this accumulation is caused by skeletal muscle mitochondrial dysfunction. Diabetes and obesity are reported to have a selective effect on the function of subsarcolemmal and interfibrillar mitochondria in insulin-resistant skeletal muscle. The current study investigated the role of the subpopulations of mitochondria in the pathogenesis of insulin resistance in the absence of obesity. A non-obese spontaneous rat model of type 2 diabetes mellitus, (Goto-Kakizaki), was used to evaluate function and biochemical properties in both populations of skeletal muscle mitochondria. In subsarcolemmal mitochondria, minor defects are observed whereas in interfibrillar mitochondria function is preserved. Subsarcolemmal mitochondria defects characterized by a mild decline of oxidative phosphorylation efficiency are related to ATP synthase and structural alterations of inner mitochondria membrane but are considered unimportant because of the absence of defects upstream as shown with polarographic and spectrophometric assays. Fatty acid transport and oxidation is preserved in both population of mitochondria, whereas palmitoyl-CoA increased 25% in interfibrillar mitochondria of diabetic rats. Contrary to popular belief, these data provide compelling evidence that mitochondrial function is unaffected in insulin-resistant skeletal muscle from T2DM non-obese rats.

Cite

CITATION STYLE

APA

Lai, N., Kummitha, C., & Hoppel, C. (2017). Defects in skeletal muscle subsarcolemmal mitochondria in a non-obese model of type 2 diabetes mellitus. PLoS ONE, 12(8). https://doi.org/10.1371/journal.pone.0183978

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free