A hPMS2 mutant cell line is defective in strand-specific mismatch repair

91Citations
Citations of this article
15Readers
Mendeley users who have this article in their library.

Abstract

Human cells contain several homologs of the bacterial mutL gene required for mismatch repair, including a gene on chromosome 7 designated hPMS2. We have identified an endometrial carcinoma cell line, HEC-1-A, that has a C → T mutation in hPMS2 that generates a nonsense codon and yields a protein truncated at the C terminus. No wild-type gene or gene product was detected. The missing amino acids in hPMS2 are highly conserved among PMS homologs, suggesting that they may be critical for function. In support of this, extracts of HEC-1-A cells are defective in repairing a variety of mismatched substrates. Moreover, di-, tri-, and tetranucleotide repeated sequences are highly unstable in single cell clones of HEC-1-A cells, and HEC-1-A cells are resistant to killing by N-methyl-N'-nitro-N-nitrosoguanidine. The results provide strong experimental support for the involvement of the hPMS2 gene product in mismatch repair in human cells and support the concept that a defective hPMS2 gene may lead to predisposition to certain forms of cancer.

Cite

CITATION STYLE

APA

Risinger, J. I., Umar, A., Barrett, J. C., & Kunkel, T. A. (1995). A hPMS2 mutant cell line is defective in strand-specific mismatch repair. Journal of Biological Chemistry, 270(31), 18183–18186. https://doi.org/10.1074/jbc.270.31.18183

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free