B - And D -meson leptonic decay constants from four-flavor lattice QCD

247Citations
Citations of this article
17Readers
Mendeley users who have this article in their library.

Abstract

We calculate the leptonic decay constants of heavy-light pseudoscalar mesons with charm and bottom quarks in lattice quantum chromodynamics on four-flavor QCD gauge-field configurations with dynamical u, d, s, and c quarks. We analyze over twenty isospin-symmetric ensembles with six lattice spacings down to a≈0.03 fm and several values of the light-quark mass down to the physical value 12(mu+md). We employ the highly-improved staggered-quark (HISQ) action for the sea and valence quarks; on the finest lattice spacings, discretization errors are sufficiently small that we can calculate the B-meson decay constants with the HISQ action for the first time directly at the physical b-quark mass. We obtain the most precise determinations to-date of the D- and B-meson decay constants and their ratios, fD+=212.7(0.6) MeV, fDs=249.9(0.4) MeV, fDs/fD+=1.1749(16), fB+=189.4(1.4) MeV, fBs=230.7(1.3) MeV, fBs/fB+=1.2180(47), where the errors include statistical and all systematic uncertainties. Our results for the B-meson decay constants are three times more precise than the previous best lattice-QCD calculations, and bring the QCD errors in the standard model predictions for the rare leptonic decays B̄(Bs→μ+μ-)=3.64(11)×10-9, B̄(B0→μ+μ-)=1.00(3)×10-11, and B̄(B0→μ+μ-)/B̄(Bs→μ+μ-)=0.00264(8) to well below other sources of uncertainty. As a byproduct of our analysis, we also update our previously published results for the light-quark-mass ratios and the scale-setting quantities fp4s, Mp4s, and Rp4s. We obtain the most precise lattice-QCD determination to date of the ratio fK+/fπ+=1.1950(-23+16) MeV.

Cite

CITATION STYLE

APA

Bazavov, A., Bernard, C., Brown, N., Detar, C., El-Khadra, A. X., Gámiz, E., … Van De Water, R. S. (2018). B - And D -meson leptonic decay constants from four-flavor lattice QCD. Physical Review D, 98(7). https://doi.org/10.1103/PhysRevD.98.074512

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free