Abstract
In this work, we compared the gas sensing behaviors of pristine and decorated multi-walled carbon nanotubes (MWCNTs) and examined the response behavior of bare and adorned MWCNTs in gas sensing. According to the data, the decorated response was 144%, which is higher than the bare CNT response of 117% in terms of the sensing response. The RF-sputtering method is used to decorate the carbon nanotubes by pure Indium (In) metal nanoparticles. Every measurement was performed in a temperature-controlled environment. Tests of the entire procedure were conducted at a 10 ppm concentration of ammonia gas. We have observed the quick reaction time (1-10 s) in pristine and (1-7 s) in decorated MWCNTs. The response was obtained 117% for the pristine and 144, 115, and 73% for the second (3 min decoration), third (6 min decoration), and fourth (9 min decoration) MWCNTs, respectively. The as-prepared pristine samples and all the decorated sensors had sensitivity values of 0.45, 0.50, 0.51, and 0.57 for time intervals of 0, 3, 6, and 9 min, respectively. It amounted to 45% for the pure and 50, 51, and 57% for the remaining as-prepared decorated sensors, respectively. Based on the measured sensor response graph, a recovery of between 80 and 85% was achieved. For a period of 10 days at a constant concentration, the stability was also assessed and we have analyzed the structural, electrical, and elemental composition of the prepared CNTs by FESEM, EDX, Raman spectroscopy, FTIR, and XRD.
Cite
CITATION STYLE
Aalam, S. M., Sarvar, M., Sadiq, M., & Ali, J. (2024). A Highly Sensitive Surface-Modified Porous Carbon Nanotube-Based Sensor for Ammonia Gas Detection. ACS Omega, 9(4), 4486–4496. https://doi.org/10.1021/acsomega.3c07244
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.