Machine learning applications in prostate cancer magnetic resonance imaging

165Citations
Citations of this article
292Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

With this review, we aimed to provide a synopsis of recently proposed applications of machine learning (ML) in radiology focusing on prostate magnetic resonance imaging (MRI). After defining the difference between ML and classical rule-based algorithms and the distinction among supervised, unsupervised and reinforcement learning, we explain the characteristic of deep learning (DL), a particular new type of ML, including its structure mimicking human neural networks and its ‘black box’ nature. Differences in the pipeline for applying ML and DL to prostate MRI are highlighted. The following potential clinical applications in different settings are outlined, many of them based only on MRI-unenhanced sequences: gland segmentation; assessment of lesion aggressiveness to distinguish between clinically significant and indolent cancers, allowing for active surveillance; cancer detection/diagnosis and localisation (transition versus peripheral zone, use of prostate imaging reporting and data system (PI-RADS) version 2), reading reproducibility, differentiation of cancers from prostatitis benign hyperplasia; local staging and pre-treatment assessment (detection of extraprostatic disease extension, planning of radiation therapy); and prediction of biochemical recurrence. Results are promising, but clinical applicability still requires more robust validation across scanner vendors, field strengths and institutions.

Cite

CITATION STYLE

APA

Cuocolo, R., Cipullo, M. B., Stanzione, A., Ugga, L., Romeo, V., Radice, L., … Imbriaco, M. (2019, December 1). Machine learning applications in prostate cancer magnetic resonance imaging. European Radiology Experimental. Springer. https://doi.org/10.1186/s41747-019-0109-2

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free