Slow Pyrolysis of Ulva lactuca (Chlorophyta) for Sustainable Production of Bio-Oil and Biochar

38Citations
Citations of this article
82Readers
Mendeley users who have this article in their library.

Abstract

Ulva Lactuca is a fast-growing algae that can be utilized as a bioenergy source. However, the direct utilization of U. lactuca for energy applications still remains challenging due to its high moisture and inorganics content. Therefore, thermochemical processing such as slow pyrolysis to produce valuable added products, namely bio-oil and biochar, is needed. This study aims to conduct a thorough investigation of bio-oil and biochar production from U. lactuca to provide valuable data for its further valorization. A slow pyrolysis of U. lactuca was conducted in a batch-type reactor at a temperature range of 400–600◦ C and times of 10–50 min. The results showed that significant compounds obtained in U. lactuca’s bio-oil are carboxylic acids (22.63–35.28%), phenolics (9.73–31.89%), amines/amides (15.33–23.31%), and N-aromatic compounds (14.04–15.68%). The ultimate analysis revealed that biochar’s H/C and O/C atomic ratios were lower than feedstock, confirming that dehydration and decarboxylation reactions occurred throughout the pyrolysis. Additionally, biochar exhibited calorific values in the range of 19.94–21.61 MJ kg−1, which is potential to be used as a solid renewable fuel. The surface morphological analysis by scanning electron microscope (SEM) showed a larger surface area in U. lactuca’s biochar than in the algal feedstock. Overall, this finding provides insight on the valorization of U. lactuca for value-added chemicals, i.e., biofuels and biochar, which can be further utilized for other applications.

Cite

CITATION STYLE

APA

Amrullah, A., Farobie, O., Bayu, A., Syaftika, N., Hartulistiyoso, E., Moheimani, N. R., … Matsumura, Y. (2022). Slow Pyrolysis of Ulva lactuca (Chlorophyta) for Sustainable Production of Bio-Oil and Biochar. Sustainability (Switzerland), 14(6). https://doi.org/10.3390/su14063233

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free