On the Mechanism of Hyperacidification in Lemon

  • Müller M
  • Irkens-Kiesecker U
  • Rubinstein B
  • et al.
N/ACitations
Citations of this article
16Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Lemon fruit vacuoles acidify their lumens to pH 2.5, 3 pH units lower than typical plant vacuoles. To study the mechanism of hyperacidification, the kinetics of ATP-driven proton pumping by tonoplast vesicles from lemon fruits and epicotyls were compared. Fruit vacuolar membranes. H+ pumping by epicotyl membranes was chloride-dependent, stimulated by sulfate, and inhibited by the classical vacuolar ATPase (V-ATPase) inhibitors nitrate, bafilomycin, N-ethylmaleimide, and N,N'-dicyclohexylcarbodiimide. In addition, the epicotyl H+ pumping activity was inactivated by oxidation was reversed by dithiothreitol. Cold inactivation of the epicotyl V-ATPase by nitrate ( > or = 100 mM) was correlated with the release of V1 complexes from the membrane. In contrast, H+ pumping by the fruit tonoplast-enriched membranes was chloride-independent, largely insensitive to the V-ATPase inhibitors, and resistant to oxidation. Unlike the epicotyl inhibitors, and resistant to oxidation. Unlike the epicotyl H(+)-ATPase, the fruit H(+)-ATPase activity was partially inhibited by 200 microM vanadate. Cold inactivation treatment failed to inhibit H+ pumping activity of the fruit membranes, even though immunoblasts showed that V1 complexes were released from the membrane. However, cold inactivation doubled the percent inhibition by 200 microM vanadate from 30% to 60%. These results suggest the presence of two H(+)-ATPases in the fruit preparation: a V-ATPase and an unidentified vanadate-sensitive H(+)-ATPase. Attempts to separate the two activities in their native membranes on linear sucrose density density gradients were unsuccessful. However, following detergent-solubilization and centrifugation on a glycerol density gradient, the two ATPase activities were resolved: a nitrate-sensitive V-type ATPase that is also partially inhibited by 200 microM vanadate, and an apparently novel vanadate-sensitive ATPase that is also partially inhibited by nitrate.

Cite

CITATION STYLE

APA

Müller, M. L., Irkens-Kiesecker, U., Rubinstein, B., & Taiz, L. (1996). On the Mechanism of Hyperacidification in Lemon. Journal of Biological Chemistry, 271(4), 1916–1924. https://doi.org/10.1074/jbc.271.4.1916

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free