Novel Convolutional Neural Networks based Jaya algorithm Approach for Accurate Deepfake Video Detection

23Citations
Citations of this article
40Readers
Mendeley users who have this article in their library.

Abstract

Deepfake videos are becoming an increasing concern due to their potential to spread misinformation and cause harm. In this paper, we propose a novel approach for accurately detecting deepfake videos using the combination of Convolutional Neural Networks (CNNs) with the Jaya algorithm optimization. The approach is evaluated on two publicly available datasets, the DeepFake Detection Challenge (DFDC) dataset and the Celeb-DF dataset, and achieves state-of-the-art performance on both datasets. Our approach achieves an accuracy of 99.3% on the DFDC dataset and 97.6% on the Celeb-DF dataset, with high F1 scores indicating a high precision and recall for detecting deepfake videos. Furthermore, our approach is more robust against adversarial attacks than existing state-of-the-art methods. The combination of CNNs with the Jaya algorithm optimization enables effective capture of the temporal information in the video sequence, while the use of robust evaluation metrics ensures objective measurement and comparison with existing methods. Our proposed approach offers a highly effective solution for detecting deepfake videos, which has the potential to be a valuable tool for media forensics, content moderation, and cyber security.

Cite

CITATION STYLE

APA

Hussain, Z. F., & Ibraheem, H. R. (2023). Novel Convolutional Neural Networks based Jaya algorithm Approach for Accurate Deepfake Video Detection. Mesopotamian Journal of CyberSecurity, 2023, 35–39. https://doi.org/10.58496/MJCS/2023/007

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free