Abstract
The authors evaluated and compared the metabolic effects of cyclosporin A in the rat brain during normoxia and hypoxia/reperfusion. Ex vivo 31P magnetic resonance spectroscopy experiments based on perfused rat brain slices showed that under normoxic conditions, 500 μg/L cyclosporin A significantly reduced mitochondrial energy metabolism (nucleotide triphosphate, 83 ± 9% of controls; phosphocreatine, 69 ± 9%) by inhibition of the Krebs cycle (glutamate, 77 ± 5%) and oxidative phosphorylation (NAD+, 65 ± 14%) associated with an increased generation of reactive oxygen species (285 ± 78% of control). However, the same cyclosporin A concentration (500 μg/L) was found to be the most efficient concentration to inhibit the hypoxia-induced mitochondrial release of Ca2+ in primary rat hippocampal cells with cytosolic Ca2+ concentrations not significantly different from normoxic controls. Addition of 500 μg/L cyclosporin A to the perfusion medium protected high-energy phosphate metabolism (nucleotide triphosphate, 11 ± 15% of control vs. 35 ± 9% with 500 μg/L cyclosporin A) and the intracellular pH (6.2 ± 0.1 control vs. 6.6 ± 0.1 with cyclosporin A) in rat brain slices during 30 minutes of hypoxia. Results indicate that cyclosporin A simultaneously decreases and protects cell glucose and energy metabolism. Whether the overall effect was a reduction or protection of cell energy metabolism depended on the concentrations of both oxygen and cyclosporin A in the buffer solution.
Author supplied keywords
Cite
CITATION STYLE
Serkova, N., Donohoe, P., Gottschalk, S., Hainz, C., Niemann, C. U., Bickler, P. E., … Christians, U. (2002). Comparison of the effects of cyclosporin A on the metabolism of perfused rat brain slices during normoxia and hypoxia. Journal of Cerebral Blood Flow and Metabolism, 22(3), 342–352. https://doi.org/10.1097/00004647-200203000-00012
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.