Estimation of maximum intraventricular pressure: A three-dimensional fluid-structure interaction model

10Citations
Citations of this article
31Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: The aim of this study was to propose a method to estimate the maximum pressure in the left ventricle (MPLV) for a healthy subject, based on cardiac outputs measured by echo-Doppler (non-invasive) and catheterization (invasive) techniques at rest and during exercise.Methods: Blood flow through aortic valve was measured by Doppler flow echocardiography. Aortic valve geometry was calculated by echocardiographic imaging. A Fluid-structure Interaction (FSI) simulation was performed, using an Arbitrary Lagrangian-Eulerian (ALE) mesh. Boundary conditions were defined as pressure loads on ventricular and aortic sides during ejection phase. The FSI simulation was used to determine a numerical relationship between the cardiac output to aortic diastolic and left ventricular pressures. This relationship enabled the prediction of pressure loads from cardiac outputs measured by invasive and non-invasive clinical methods.Results: Ventricular systolic pressure peak was calculated from cardiac output of Doppler, Fick oximetric and Thermodilution methods leading to a 22%, 18% and 24% increment throughout exercise, respectively. The mean gradients obtained from curves of ventricular systolic pressure based on Doppler, Fick oximetric and Thermodilution methods were 0.48, 0.41 and 0.56 mmHg/heart rate, respectively. Predicted Fick-MPLV differed by 4.7%, Thermodilution-MPLV by 30% and Doppler-MPLV by 12%, when compared to clinical reports.Conclusions: Preliminary results from one subject show results that are in the range of literature values. The method needs to be validated by further testing, including independent measurements of intraventricular pressure. Since flow depends on the pressure loads, measuring more accurate intraventricular pressures helps to understand the cardiac flow dynamics for better clinical diagnosis. Furthermore, the method is non-invasive, safe, cheap and more practical. As clinical Fick-measured values have been known to be more accurate, our Fick-based prediction could be the most applicable. © 2013 Bahraseman et al.; licensee BioMed Central Ltd.

Cite

CITATION STYLE

APA

Bahraseman, H. G., Hassani, K., khosravi, A., Navidbakhsh, M., Espino, D. M., Kazemi-Saleh, D., & Fatourayee, N. (2013). Estimation of maximum intraventricular pressure: A three-dimensional fluid-structure interaction model. BioMedical Engineering Online, 12(1). https://doi.org/10.1186/1475-925X-12-122

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free