We fabricated titanium dioxide (TiO2)-silica (SiO2) nanocomposite structures with controlled morphology by a simple synthetic approach using cooperative sol-gel chemistry and block copolymer (BCP) self-assembly. Mixed TiO2-SiO2 sol-gel precursors were blended with amphiphilic poly(styrene-block-ethylene oxide) (PS-b-PEO) BCPs where the precursors were selectively incorporated into the hydrophilic PEO domains. Changing the volumetric ratio of TiO2-SiO2 sol-gel precursor from 5% to 20%, a stepwise structural inversion occurred from nanodot arrays to discrete nanowires. Template free hybrid inorganic nanostructures were produced after the removal of PS-b-PEO by irradiation of UV light. The morphological evolution and photophysical properties were investigated by microscopic studies, UV-visible absorption and photocatalytic properties. © 2010 by the authors.
CITATION STYLE
Kannaiyan, D., Kochuveedu, S. T., Jang, Y. H., Jang, Y. J., Lee, J. Y., Lee, J., … Kim, D. H. (2010). Enhanced photophysical properties of nanopatterned titania nanodots/nanowires upon hybridization with silica via block copolymer templated sol-gel process. Polymers, 2(4), 490–504. https://doi.org/10.3390/polym2040490
Mendeley helps you to discover research relevant for your work.