It has been shown that moisture plays a critical role in the stability of iodine and that reducing agents in iodized salt reduce the stability of iodine. We question whether this is valid in all cases, and have found that the reducing agent may play a more important role than moisture in decreasing the stability of iodine. We reviewed current methods to enhance iodine retention in iodized salt, and propose methods to produce stable iodized salt and to analyze its stability. Our experiments showed that when reducing impurities are removed, iodine remains stable in iodized salt, even when the salt is "wet." We suggest that the stability of iodine in iodized salt can be improved by oxidizing iodized salt with sodium hypochloride, and that the iodine content of iodized salt, after heating at 120°C for one hour, can be used to reflect the quality of iodized salt. We have demonstrated that reducing agents play a critical role in the stability of iodine in iodized salt. We have shown a method of purifying salt by removing reducing materials, which can be used to produce iodized salt with sufficient stability at lower cost. We also propose an analytical method to determine the stability of iodine in iodized salt. These methods could be further developed to achieve better accuracy, precision, and reliability and be applied to a greater variety of iodized salts. © 2004, The United Nations University.
CITATION STYLE
Shi, H. (2004). Adding an oxidant increases the stability of iodine in iodized salt. Food and Nutrition Bulletin, 25(2), 137–141. https://doi.org/10.1177/156482650402500205
Mendeley helps you to discover research relevant for your work.