The remote electron beam-induced current analysis of grain boundaries in semiconducting and semi-insulating materials

10Citations
Citations of this article
15Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

When no charge collecting p-n junction or Schottky barrier is present in the specimen, but two contacts are applied, conductive mode scanning electron microscope (SEM) observations known as remote electron beam-induced current (REBIC) can be made. It was described as 'remote' EBIC because the contacts to the specimen can lie at macroscopic distances from the beam impact point. In recent years, REBIC has been found to be useful not only for studies of grain boundaries in semiconducting silicon and germanium, but also in semi- insulating materials such as the wider bandgap II-VI compounds and electroceramic materials like varistor ZnO and positive temperature coefficient resistor (PTCR) BaTiO3. The principles of this method are outlined. Accounts are given of the five forms of charge collection and resistive contrast that appear at grain boundaries (GBs) in REBIC micrographs. These are (1) terraced contrast due to high resistivity boundary layers, (2) peak and trough (PAT) contrast due to charge on the boundary, (3) reversible contrast seen only under external voltage bias due to the beta- conductive effect in a low conductivity boundary layer, (4) dark contrast due to enhanced recombination, and (5) bright contrast apparently due to reduced recombination. For comparison, the results of the extensive EBIC studies of GBs in Si and Ge are first outlined and then the results of recent REBIC grain boundary studies in both semiconducting and semi-insulating materials are reviewed.

Cite

CITATION STYLE

APA

Holt, D. B. (2000). The remote electron beam-induced current analysis of grain boundaries in semiconducting and semi-insulating materials. In Scanning (Vol. 22, pp. 28–51). Found Adv Med Sci Inc. https://doi.org/10.1002/sca.4950220106

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free