Root traits of European Vicia faba cultivars—Using machine learning to explore adaptations to agroclimatic conditions

18Citations
Citations of this article
59Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Faba bean (Vicia faba L.) is an important source of protein, but breeding for increased yield stability and stress tolerance is hampered by the scarcity of phenotyping information. Because comparisons of cultivars adapted to different agroclimatic zones improve our understanding of stress tolerance mechanisms, the root architecture and morphology of 16 European faba bean cultivars were studied at maturity. Different machine learning (ML) approaches were tested in their usefulness to analyse trait variations between cultivars. A supervised, that is, hypothesis-driven, ML approach revealed that cultivars from Portugal feature greater and coarser but less frequent lateral roots at the top of the taproot, potentially enhancing water uptake from deeper soil horizons. Unsupervised clustering revealed that trait differences between northern and southern cultivars are not predominant but that two cultivar groups, independently from major and minor types, differ largely in overall root system size. Methodological guidelines on how to use powerful ML methods such as random forest models for enhancing the phenotypical exploration of plants are given.

Cite

CITATION STYLE

APA

Zhao, J., Sykacek, P., Bodner, G., & Rewald, B. (2018). Root traits of European Vicia faba cultivars—Using machine learning to explore adaptations to agroclimatic conditions. Plant Cell and Environment, 41(9), 1984–1996. https://doi.org/10.1111/pce.13062

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free