Nuclear targeting determinants of the far upstream element binding protein, a c-myc transcription factor

52Citations
Citations of this article
28Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

FUSE binding protein (FBP) binds in vivo and in vitro with the single-stranded far upstream element (FUSE) upstream of the c-myc gene. In addition to its transcriptional role, FBP and its closely related siblings FBP2 (KSRP) and FBP3 have been reported to bind RNA and participate in various steps of RNA processing, transport or catabolism. To perform these diverse functions, FBP must traffic to different nuclear sites. To identify determinants of nuclear localization, full-length FBP or fragments thereof were fused to green fluorescent protein. Fluorescent-FBP localized in the nucleus in three patterns, diffuse, dots and spots. Each pattern was conferred by a distinct nuclear localization signal (NLS): a classical bipartite NLS in the N-terminal and two non-canonical signals, an α-helix in the third KH-motif of the nucleic acid binding domain and a tyrosine-rich motif in the C-terminal transcription activation domain. Upon treatment with the transcription inhibitor actinomycin D, FBP completely re-localized into dots, but did not exit from the nucleus. This is in contrast to many general RNA-binding proteins, which shuttle from the nucleus upon treatment with actinomycin D. Furthermore, FBP co-localized with transcription sites and with the general transcription factor TFIIH, but not with the splicing factor SC-35. Taken together, these data reveal complex intranuclear trafficking of FBP and support a transcriptional role for this protein.

Cite

CITATION STYLE

APA

He, L., Weber, A., & Levens, D. (2000). Nuclear targeting determinants of the far upstream element binding protein, a c-myc transcription factor. Nucleic Acids Research, 28(22), 4558–4565. https://doi.org/10.1093/nar/28.22.4558

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free