Advective pathways for Fukushima Daiichi Nuclear Power Plant (FDNPP)-derived cesium observed in 2013 at 166°E south of the Kuroshio Extension (KE) at >500 m on the 26.5σθ isopycnal are investigated. Attention is paid to the KE's role in shaping these pathways. Using a high-resolution model, particle trajectories were simulated backward and forward in time on 26.5σθ between the 2013 observations and the 2011 source. A large fraction of backtracked trajectories interacted with the mixed layer just offshore of the FDNPP. The likeliest pathway reaching the deepest 2013 observed cesium location runs along the KE out to ~165°E, where it turns sharply southward. Forward trajectory statistics suggest that for 26.5σθ waters originating north of the KE, this current acted as a permeable barrier west of 155–160°E. The deepest 2011 model mixed layers suggest that FDNPP-derived radionuclides may have been present at 30°N in 2013 at greater depths and densities (700 m; 26.8σθ).
CITATION STYLE
Cedarholm, E. R., Rypina, I. I., Macdonald, A. M., & Yoshida, S. (2019). Investigating Subsurface Pathways of Fukushima Cesium in the Northwest Pacific. Geophysical Research Letters, 46(12), 6821–6829. https://doi.org/10.1029/2019GL082500
Mendeley helps you to discover research relevant for your work.