Decoupling the impact of MicroRNAs on translational repression versus RNA degradation in embryonic stem cells

59Citations
Citations of this article
86Readers
Mendeley users who have this article in their library.

Abstract

Translation and mRNA degradation are intimately connected, yet the mechanisms that link them are not fully understood. Here, we studied these mechanisms in embryonic stem cells (ESCs). Transcripts showed a wide range of stabilities, which correlated with their relative translation levels and that did not change during early ESC differentiation. The protein DHH1 links translation to mRNA stability in yeast; however, loss of the mammalian homolog, DDX6, in ESCs did not disrupt the correlation across transcripts. Instead, the loss of DDX6 led to upregulated translation of microRNA targets, without concurrent changes in mRNA stability. The Ddx6 knockout cells were phenotypically and molecularly similar to cells lacking all microRNAs (Dgcr8 knockout ESCs). These data show that the loss of DDX6 can separate the two canonical functions of microRNAs: translational repression and transcript destabilization. Furthermore, these data uncover a central role for translational repression independent of transcript destabilization in defining the downstream consequences of microRNA loss.

Cite

CITATION STYLE

APA

Freimer, J. W., Hu, T. J., & Blelloch, R. (2018). Decoupling the impact of MicroRNAs on translational repression versus RNA degradation in embryonic stem cells. ELife, 7. https://doi.org/10.7554/eLife.38014

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free