Improving activity of minicellulosomes by integration of intra- and intermolecular synergies

32Citations
Citations of this article
73Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: Complete hydrolysis of cellulose to glucose requires the synergistic action of three general types of glycoside hydrolases; endoglucanases, exoglucanases, and cellobiases. Cellulases that are found in Nature vary considerably in their modular diversity and architecture. They include: non-complexed enzymes with single catalytic domains, independent single peptide chains incorporating multiple catalytic modules, and complexed, scaffolded structures, such as the cellulosome. The discovery of the latter two enzyme architectures has led to a generally held hypothesis that these systems take advantage of intramolecular and intermolecular proximity synergies, respectively, to enhance cellulose degradation. We use domain engineering to exploit both of these concepts to improve cellulase activity relative to the activity of mixtures of the separate catalytic domains. Results: We show that engineered minicellulosomes can achieve high levels of cellulose conversion on crystalline cellulose by taking advantage of three types of synergism; (1) a complementary synergy produced by interaction of endo- and exo-cellulases, (2) an intramolecular synergy of multiple catalytic modules in a single gene product (this type of synergism being introduced for the first time to minicellulosomes targeting crystalline cellulose), and (3) an intermolecular proximity synergy from the assembly of these cellulases into larger multi-molecular structures called minicellulosomes. The binary minicellulosome constructed in this study consists of an artificial multicatalytic cellulase (CBM4-Ig-GH9- X1§ssub§1§esub§-X1§ssub§2§esub§-GH8-Doc) and one cellulase with a single catalytic domain (a modified Cel48S with the structure CBM4-Ig-GH48-Doc), connected by a non-catalytic scaffoldin protein. The high level endo-exo synergy and intramolecular synergies within the artificial multifunctional cellulase have been combined with an additional proximity-dependent synergy produced by incorporation into a minicellulosome demonstrating high conversion of crystalline cellulose (Avicel). Our minicellulosome is the first engineered enzyme system confirmed by test to be capable of both operating at temperatures as high as 60°C and converting over 60% of crystalline cellulose to fermentable sugars. Conclusion: When compared to previously reported minicellulosomes assembled from cellulases containing only one catalytic module each, our novel minicellulosome demonstrates a method for substantial reduction in the number of peptide chains required, permitting improved heterologous expression of minicellulosomes in microbial hosts. In addition, it has been shown to be capable of substantial conversion of actual crystalline cellulose, as well as of the less-well-ordered and more easily digestible fraction of nominally crystalline cellulose. © 2013 Xu et al.; licensee BioMed Central Ltd.

Cite

CITATION STYLE

APA

Xu, Q., Ding, S. Y., Brunecky, R., Bomble, Y. J., Himmel, M. E., & Baker, J. O. (2013). Improving activity of minicellulosomes by integration of intra- and intermolecular synergies. Biotechnology for Biofuels, 6(1). https://doi.org/10.1186/1754-6834-6-126

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free