Irinotecan is conventionally used for the treatment of colorectal cancer. However, its administration is associated with severe side effects. Targeted drug delivery using ultrasound (US) combined with microbubbles offers new opportunities to increase the therapeutic effectiveness of antitumor treatment and to reduce toxic exposure to healthy tissues. The objective of this study is to investigate the safety and efficacy of in-vivo delivery of irinotecan by microbubble-assisted US in human glioblastoma model (U-87 MG). In order to validate the potential of this new method in-vivo, subcutaneous tumors were implanted in the flank of nude mouse and treated when they reached a volume of 100 mm3. In the first study, the measured volumes with caliper and anatomic ultrasound imaging were compared for the monitoring and the quantification of tumor growth during 27 days. Ultrasound imaging measurements were positively correlated to caliper measurements. The tumor treatment consisted of an i.v. injection of irinotecan (20 mg/kg) followed one hour later by i.v. administration of MM1 microbubble and an US insonation using a single-element transducer operating at 1MHz (400 kPa, 10 kHz PRF 40% DC, 3 min). The therapeutic efficacy was evaluated for 39 days by measuring the tumor volume before and after treatment using a caliper and based on ultrasound images using an 18 MHz probe (Vevo 2100). Our results showed that anatomical ultrasound imaging was as efficient as caliper for the monitoring and the quantification of tumor growth. Moreover, irinotecan delivery by sonoporation induced a significant decrease of glioblastoma tumor volume and an increase of tumor-doubling time compared to the tumor treated by irinotecan alone. In conclusion, this novel therapeutic approach has promising features since it can be used to reduce the injected drug dose and to achieve a better therapeutic efficacy. © 2012 American Institute of Physics.
CITATION STYLE
Escoffre, J. M., Novell, A., Serrière, S., & Bouakaz, A. (2012). Irinotecan delivery by microbubble-assisted ultrasound - A pilot preclinical study. In AIP Conference Proceedings (Vol. 1503, pp. 40–45). https://doi.org/10.1063/1.4769914
Mendeley helps you to discover research relevant for your work.