Study of the degradation in aqueous solution of a refractory organic compound: Avermectin type used as pesticide in agriculture

5Citations
Citations of this article
23Readers
Mendeley users who have this article in their library.

Abstract

We examined the removal of abamectin by the electro-Fenton (EF) process and the feasibility of biological treatment after degradation. The effect of the operating parameters showed that abamectin (Aba) degradation was enhanced with increasing temperature. Response surface analysis of the central composite design led to the following optimal conditions for the abatement of chemical oxygen demand: 45.5 °C, 5 mg L-1, 150 mA, and 0.15 mmol L-1 for the temperature, initial Aba concentration, current intensity, and catalyst concentration, respectively. Under these conditions, 68.01% of the organic matter was removed and 94% of Aba was degraded after 5 h and 20 min of electrolysis, respectively. A biodegradability test, which was performed on a solution electrolyzed at 47 °C, 9 mg L-1, 150 mA, and 0.15 mmol L-1, confirms that the ratio of biological oxygen demand/chemical oxygen demand increased appreciably from 0.0584 to 0.64 after 5 h of electrolysis. This increased ratio is slightly above the limit of biodegradability (0.4). These results show the relevance of the EF process and its effectiveness for abamectin degradation. We conclude that biological treatment can be combined with the EF process for total mineralization.

Cite

CITATION STYLE

APA

Boukhrissa, A., Ferrag-Siagh, F., Rouidi, L. M., Aït-Amar, H., & Chemat, S. (2017). Study of the degradation in aqueous solution of a refractory organic compound: Avermectin type used as pesticide in agriculture. Water Science and Technology, 76(8), 1966–1980. https://doi.org/10.2166/wst.2017.310

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free