High Efficiency (18.53%) of Flexible Perovskite Solar Cells via the Insertion of Potassium Chloride between SnO2 and CH3NH3PbI3 Layers

65Citations
Citations of this article
90Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Flexible perovskite solar cells (PSCs) were ideal candidates for wearable devices due to the merits of flexibility, high efficiency, and being lightweight, and they could be fabricated in a continuous roll-to-roll production process to achieve large-area and low cost devices. Herein, the high efficiency (up to 18.53%) and fill factor (0.81) of flexible PSCs (ITO/SnO2/KCl/MAPbI3/spiro-OMeTAD/Ag) were achieved by low-pressure assisted solution processing under low temperature (-100 °C). The surface morphology and crystallinity of perovskite films were effectively promoted by the KCl modification and the defect density of perovskite films as well as the hysteresis of the corresponding devices was reduced accordingly. In addition, the stability and bendability of the KCl-modified flexible PSCs were improved simultaneously. To the best of our knowledge, both the efficiency and fill factor are the best among all flexible PSCs reported to date. Therefore, the insertion of KCl between SnO2 and MAPbI3 layers provided a promising strategy for highly efficient flexible PSCs fabricated in low temperature (-100 °C) conditions.

Cite

CITATION STYLE

APA

Zhu, N., Qi, X., Zhang, Y., Liu, G., Wu, C., Wang, D., … Qu, B. (2019). High Efficiency (18.53%) of Flexible Perovskite Solar Cells via the Insertion of Potassium Chloride between SnO2 and CH3NH3PbI3 Layers. ACS Applied Energy Materials, 2(5), 3676–3682. https://doi.org/10.1021/acsaem.9b00391

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free