Semiconductor–metal transition in Bi2Se3 caused by impurity doping

9Citations
Citations of this article
8Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Doping a typical topological insulator, Bi2Se3, with Ag impurity causes a semiconductor–metal (S-M) transition at 35 K. To deepen the understanding of this phenomenon, structural and transport properties of Ag-doped Bi2Se3 were studied. Single-crystal X-ray diffraction (SC-XRD) showed no structural transitions but slight shrinkage of the lattice, indicating no structural origin of the transition. To better understand electronic properties of Ag-doped Bi2Se3, extended analyses of Hall effect and electric-field effect were carried out. Hall effect measurements revealed that the reduction of resistance was accompanied by increases in not only carrier density but carrier mobility. The field-effect mobility is different for positive and negative gate voltages, indicating that the EF is located at around the bottom of the bulk conduction band (BCB) and that the carrier mobility in the bulk is larger than that at the bottom surface at all temperatures. The pinning of the EF at the BCB is found to be a key issue to induce the S-M transition, because the transition can be caused by depinning of the EF or the crossover between the bulk and the top surface transport.

Cite

CITATION STYLE

APA

Uchiyama, T., Goto, H., Uesugi, E., Takai, A., Zhi, L., Miura, A., … Kubozono, Y. (2023). Semiconductor–metal transition in Bi2Se3 caused by impurity doping. Scientific Reports, 13(1). https://doi.org/10.1038/s41598-023-27701-5

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free