Reliable estimation of biochemical parameters from C3 leaf photosynthesis-intercellular carbon dioxide response curves

155Citations
Citations of this article
288Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The Farquhar-von Caemmerer-Berry (FvCB) model of photosynthesis is a change-point model and structurally overparameterized for interpreting the response of leaf net assimilation (A) to intercellular CO2 concentration (Ci). The use of conventional fitting methods may lead not only to incorrect parameters but also several previously unrecognized consequences. For example, the relationships between key parameters may be fixed computationally and certain fits may be produced in which the estimated parameters result in contradictory identification of the limitation states of the data. Here we describe a new approach that is better suited to the FvCB model characteristics. It consists of four main steps: (1) enumeration of all possible distributions of limitation states; (2) fitting the FvCB model to each limitation state distribution by minimizing a distribution-wise cost function that has desirable properties for parameter estimation; (3) identification and correction of inadmissible fits; and (4) selection of the best fit from all possible limitation state distributions. The new approach implemented theoretical parameter resolvability with numerical procedures that maximally use the information content of the data. It was tested with model simulations, sampled A/Ci curves, and chlorophyll fluorescence measurements of different tree species. The new approach is accessible through the automated website leafweb.ornl.gov. © 2010 Blackwell Publishing Ltd.

Cite

CITATION STYLE

APA

Gu, L., Pallardy, S. G., Tu, K., Law, B. E., & Wullschleger, S. D. (2010). Reliable estimation of biochemical parameters from C3 leaf photosynthesis-intercellular carbon dioxide response curves. Plant, Cell and Environment, 33(11), 1852–1874. https://doi.org/10.1111/j.1365-3040.2010.02192.x

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free