Probabilistic Deep Learning for Electric-Vehicle Energy-Use Prediction

25Citations
Citations of this article
43Readers
Mendeley users who have this article in their library.
Get full text

Abstract

The continued spread of electric vehicles raises new challenges for the supporting digital infrastructure. For example, long-distance route planning for such vehicles relies on the prediction of both the expected travel time as well as energy use. We envision a two-Tier architecture to produce such predictions. First, a routing and travel-Time-prediction subsystem generates a suggested route and predicts how the speed will vary along the route. Next, the expected energy use is predicted from the speed profile and other contextual characteristics, such as weather information and slope. To this end, the paper proposes deep-learning models that are built from EV tracking data. First, as the speed profile of a route is one of the main predictors for energy use, different simple ways to build speed profiles are explored. Next, eight different deep-learning models for energy-use prediction are proposed. Four of the models are probabilistic in that they predict not a single-point estimate but parameters of a probability distribution of energy use on the route. This is particularly relevant when predicting EV energy use, which is highly sensitive to many input characteristics and, thus, can hardly be predicted precisely. Extensive experiments with two real-world EV tracking datasets validate the proposed methods. The code for this research has been made available on GitHub.

Cite

CITATION STYLE

APA

Petkevicius, L., Saltenis, S., Civilis, A., & Torp, K. (2021). Probabilistic Deep Learning for Electric-Vehicle Energy-Use Prediction. In ACM International Conference Proceeding Series (pp. 85–95). Association for Computing Machinery. https://doi.org/10.1145/3469830.3470915

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free