Machine Learning Identification of Obstructive Sleep Apnea Severity through the Patient Clinical Features: A Retrospective Study

38Citations
Citations of this article
43Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Objectives: To evaluate the role of clinical scores assessing the risk of disease severity in patients with clinical suspicion of obstructive sleep apnea syndrome (OSA). The hypothesis was tested by applying artificial intelligence (AI) to demonstrate its effectiveness in distinguishing between mild–moderate OSA and severe OSA risk. Methods: A support vector machine model (SVM) was developed from the samples included in the analysis (N = 498), and they were split into 75% for training (N = 373) with the remaining for testing (N = 125). Two diagnostic thresholds were selected for OSA severity: mild to moderate (apnea–hypopnea index (AHI) ≥ 5 events/h and AHI < 30 events/h) and severe (AHI ≥ 30 events/h). The algorithms were trained and tested to predict OSA patient severity. Results: The sensitivity and specificity for the SVM model were 0.93 and 0.80 with an accuracy of 0.86; instead, the logistic regression full mode reported a value of 0.74 and 0.63, respectively, with an accuracy of 0.68. After backward stepwise elimination for features selection, the reduced logistic regression model demonstrated a sensitivity and specificity of 0.79 and 0.56, respectively, and an accuracy of 0.67. Conclusion: Artificial intelligence could be applied to patients with symptoms related to OSA to identify individuals with a severe OSA risk with clinical-based algorithms in the OSA framework.

Cite

CITATION STYLE

APA

Maniaci, A., Riela, P. M., Iannella, G., Lechien, J. R., La Mantia, I., De Vincentiis, M., … Vicini, C. (2023). Machine Learning Identification of Obstructive Sleep Apnea Severity through the Patient Clinical Features: A Retrospective Study. Life, 13(3). https://doi.org/10.3390/life13030702

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free