Promoting cold-start items in recommender systems

32Citations
Citations of this article
69Readers
Mendeley users who have this article in their library.

Abstract

As one of the major challenges, cold-start problem plagues nearly all recommender systems. In particular, new items will be overlooked, impeding the development of new products online. Given limited resources, how to utilize the knowledge of recommender systems and design efficient marketing strategy for new items is extremely important. In this paper, we convert this ticklish issue into a clear mathematical problem based on a bipartite network representation. Under the most widely used algorithm in real e-commerce recommender systems, the so-called item-based collaborative filtering, we show that to simply push new items to active users is not a good strategy. Interestingly, experiments on real recommender systems indicate that to connect new items with some less active users will statistically yield better performance, namely, these new items will have more chance to appear in other users' recommendation lists. Further analysis suggests that the disassortative nature of recommender systems contributes to such observation. In a word, getting in-depth understanding on recommender systems could pave the way for the owners to popularize their cold-start products with low costs. Copyright:

Cite

CITATION STYLE

APA

Liu, J. H., Zhou, T., Zhang, Z. K., Yang, Z., Liu, C., & Li, W. M. (2014). Promoting cold-start items in recommender systems. PLoS ONE, 9(12). https://doi.org/10.1371/journal.pone.0113457

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free