A Spectral Transfer Function to Harmonize Existing Soil Spectral Libraries Generated by Different Protocols

3Citations
Citations of this article
23Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Soil spectral libraries (SSLs) are important big-data archives (spectra associated with soil properties) that are analyzed via machine-learning algorithms to estimate soil attributes. Since different spectral measurement protocols are applied when constructing SSLs, it is necessary to examine harmonization techniques to merge the data. In recent years, several techniques for harmonization have been proposed, among which the internal soil standard (ISS) protocol is the most largely applied and has demonstrated its capacity to rectify systematic effects during spectral measurements. Here, we postulate that a spectral transfer function (TF) can be extracted between existing (old) SSLs if a subset of samples from two (or more) different SSLs are remeasured using the ISS protocol. A machine-learning TF strategy was developed, assembling random forest (RF) spectral-based models to predict the ISS spectral condition using soil samples from two existing SSLs. These SSLs had already been measured using different protocols without any ISS treatment the Brazilian (BSSL, generated in 2019) and the European (LUCAS, generated in 2009-2012) SSLs. To verify the TF's ability to improve the spectral assessment of soil attributes after harmonizing the different SSLs' protocols, RF spectral-based models for estimating organic carbon (OC) in soil were developed. The results showed high spectral similarities between the ISS and the ISS-TF spectral observations, indicating that post-ISS rectification is possible. Furthermore, after merging the SSLs with the TFs, the spectral-based assessment of OC was considerably improved, from R2 = 0.61, RMSE (g/kg) = 12.46 to R2 = 0.69, RMSE (g/kg) = 11.13. Given our results, this paper enhances the importance of soil spectroscopy by contributing to analyses in remote sensing, soil surveys, and digital soil mapping.

Cite

CITATION STYLE

APA

Francos, N., Heller-Pearlshtien, D., Dematte, J. A. M., Van Wesemael, B., Milewski, R., Chabrillat, S., … Ben-Dor, E. (2023). A Spectral Transfer Function to Harmonize Existing Soil Spectral Libraries Generated by Different Protocols. Applied and Environmental Soil Science, 2023. https://doi.org/10.1155/2023/4155390

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free