Optimization of the electrolyte parameters and components in zinc particle fuel cells

19Citations
Citations of this article
32Readers
Mendeley users who have this article in their library.

Abstract

Zinc (Zn)-air fuel cells (ZAFC) are a widely-acknowledged type of metal air fuel cells, but optimization of several operational parameters and components will facilitate enhanced power performance. This research study has been focused on the investigation of ZAFC Zn particle fuel with flowing potassium hydroxide (KOH) electrolyte. Parameters like optimum electrolyte concentration, temperature, and flow velocity were optimized. Moreover, ZAFC components like anode current collector and cathode conductor material were varied and the appropriate materials were designated. Power performance was analyzed in terms of open circuit voltage (OCV), power, and current density production and were used to justify the results of the study. The flow rate of the electrolyte was determined as 150 mL/min in the self-designed configuration. KOH electrolyte of 40 wt% concentration, at a temperature of 55 to 65 °C, and with a flow velocity of 0.12 m/s was considered to be beneficial for the ZAFCs operated in this study. Nickel mesh with a surface area of 400 cm2 was chosen as anode current collector and copper plate was considered as cathode conductor material in the fuel cells designed and operated in this study. The power production of this study was better compared to some previously published works. Thus, effective enhancement and upgrading process of the ZAFCs will definitely provide great opportunities for their applications in the future.

Cite

CITATION STYLE

APA

Sangeetha, T., Chen, P. T., Cheng, W. F., Yan, W. M., & Huang, K. D. (2019). Optimization of the electrolyte parameters and components in zinc particle fuel cells. Energies, 12(6). https://doi.org/10.3390/en12061090

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free