New hyperspectral difference water index for the extraction of urban water bodies by the use of airborne hyperspectral images

  • Xie H
  • Luo X
  • Xu X
  • et al.
51Citations
Citations of this article
55Readers
Mendeley users who have this article in their library.

Abstract

Extracting surface land-cover types and analyzing changes are among the most common applications of remote sensing. One of the most basic tasks is to identify and map surface water boundaries. Spectral water indexes have been successfully used in the extraction of water bodies in multispectral images. However, directly applying a water index method to hyperspectral images disregards the abundant spectral information and involves difficulty in selecting appropriate spectral bands. It is also a challenge for a spectral water index to distinguish water from shadowed regions. The purpose of this study is therefore to develop an index that is suitable for water extraction by the use of hyperspectral images, and with the capability to mitigate the effects of shadow and low-albedo surfaces, especially in urban areas. Thus, we introduce a new hyperspectral difference water index (HDWI) to improve the water classification accuracy in areas that include shadow over water, shadow over other ground surfaces, and low-albedo ground surfaces. We tested the new method using PHI-2, HyMAP, and ROSIS hyperspectral images of Shanghai, Munich, and Pavia. The performance of the water index was compared with the normalized difference water index (NDWI) and the Mahalanobis distance classifier (MDC). With all three test images, the accuracy of HDWI was significantly higher than that of NDWI and MDC. Therefore, HDWI can be used for extracting water with a high degree of accuracy, especially in urban areas, where shadow caused by high buildings is an important source of classification error. © 2014 The Authors.

Cite

CITATION STYLE

APA

Xie, H., Luo, X., Xu, X., Tong, X., Jin, Y., Pan, H., & Zhou, B. (2014). New hyperspectral difference water index for the extraction of urban water bodies by the use of airborne hyperspectral images. Journal of Applied Remote Sensing, 8(1), 085098. https://doi.org/10.1117/1.jrs.8.085098

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free