The photocatalytic degradation of wastewater containing three industrial dyes belonging to different families, methyl orange (MO), methylene blue (MB) and Rhodamine B (RhB), was studied under UV-Vis irradiation using synthesised silver chloride nanoparticles. The nanocatalyst was prepared by a dissolution/reprecipitation method starting from the bulk powder and the ionic liquid trihexyl (tetradecyl)phosphonium chloride, [P6 6 6 14]Cl, without addition of other solvents. The obtained catalyst was characterised by UV-Vis absorbance, X-ray powder diffraction, transmission electron microscopy and scanning electron microscopy. The decolourisation of the samples was studied by UV-Vis absorbance at the corresponding wavelength. Starting from 10 ppm dye solutions and 1 g L-1 of the synthesised AgCl nanoparticles, degradation efficiencies of 98.4% for MO, 98.6% for MB and 99.9% for RhB, were achieved in 1 h. The degradation mechanisms for the different dyes were studied. Comparison with other frequently used nanocatalysts, namely P-25 Degussa, TiO2 anatase, Ag and ZnO, highlights the strong catalytic activity of AgCl nanoparticles. Under the same experimental conditions, these nanoparticles led to higher (more than 10%) and faster degradations.
CITATION STYLE
Rodríguez-Cabo, B., Rodríguez-Palmeiro, I., Corchero, R., Rodil, R., Rodil, E., Arce, A., & Soto, A. (2017). Photocatalytic degradation of methyl orange, methylene blue and rhodamine B with AgCl nanocatalyst synthesised from its bulk material in the ionic liquid [P6 6 6 14]Cl. Water Science and Technology, 75(1), 128–140. https://doi.org/10.2166/wst.2016.499
Mendeley helps you to discover research relevant for your work.