REVIO: Range- and Event-Based Visual-Inertial Odometry for Bio-Inspired Sensors

8Citations
Citations of this article
11Readers
Mendeley users who have this article in their library.

Abstract

Visual-inertial odometry is critical for Unmanned Aerial Vehicles (UAVs) and robotics. However, there are problems of motion drift and motion blur in sharp brightness changes and fast-motion scenes. It may cause the degradation of image quality, which leads to poor location. Event cameras are bio-inspired vision sensors that offer significant advantages in high-dynamic scenes. Leveraging this property, this paper presents a new range and event-based visual-inertial odometry (REVIO). Firstly, we propose an event-based visual-inertial odometry (EVIO) using sliding window nonlinear optimization. Secondly, REVIO is developed on the basis of EVIO, which fuses events and distances to obtain clear event images and improves the accuracy of position estimation by constructing additional range constraints. Finally, the EVIO and REVIO are tested in three experiments—dataset, handheld and flight—to evaluate the localization performance. The error of REVIO can be reduced by nearly 29% compared with EVIO in the handheld experiment and almost 28% compared with VINS-Mono in the flight experiment, which demonstrates the higher accuracy of REVIO in some fast-motion and high-dynamic scenes.

Cite

CITATION STYLE

APA

Wang, Y., Shao, B., Zhang, C., Zhao, J., & Cai, Z. (2022). REVIO: Range- and Event-Based Visual-Inertial Odometry for Bio-Inspired Sensors. Biomimetics, 7(4). https://doi.org/10.3390/biomimetics7040169

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free