Abstract
Aims: To estimate the size and spatial patterns of 3-m-deep soil inorganic carbon (SIC) stock across alpine grasslands on the Qinghai-Xizang Plateau. Methods We conducted a comprehensive investigation and collected soil samples from 342 3-m-deep cores and 177 50-cm-deep pits across the study area. Using Kriging interpolation, we interpolated site-level observations to the regional level. The distribution of SIC density was then overlaid with the regional vegetation map at a scale of 1:1 000 000 to calculate SIC stock of the alpine steppe and alpine meadow. Kruskal-Wallis tests were further conducted to examine the differences of SIC density between the two grassland types and among soil depths with 50 cm-depth intervals. Important findings: The total SIC stock at depths of 50 cm, 1 m, 2 m and 3 m were estimated at 8.26, 17.82, 36.33 and 54.29 Pg C, with SIC density being 7.22, 15.58, 31.76 and 47.46 kg C.m-2, respectively. SIC density exhibited large spatial variability, with an increasing trend from the southeastern to the northwestern plateau. Much larger SIC stock was observed in the alpine steppe than alpine meadow, with the former accounting for 63%-66% of the total stock at depths of 50 cm, 1 m, 2 m and 3 m. A large amount of SIC stock was found in deep soils (1-3 m), amounting to approximately 2 times as much carbon stored in the top 1-m-deep soil layer. The vertical distributions of SIC density differed between the two grassland types. The highest proportions of SIC occurred in the upper 50 cm layer for the alpine steppe while the highest proportions occurred in 100-150 cm layer for the alpine meadow. These results highlight that a large amount of SIC is stored in deep soil layers, which should be considered in evaluating terrestrial carbon balance under global change scenario.
Author supplied keywords
Cite
CITATION STYLE
Zhang, B. B., Liu, F., Ding, J. Z., Fang, K., Yang, G. B., Liu, L., … Yang, Y. H. (2016). Soil inorganic carbon stock in alpine grasslands on the Qinghai-Xizang Plateau: An updated evaluation using deep cores. Chinese Journal of Plant Ecology, 40(2), 93–101. https://doi.org/10.17521/cjpe.2015.0406
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.