An adventurous synthetic journey with MNBA from its reaction chemistry to the total synthesis of natural products

46Citations
Citations of this article
19Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

After initially establishing a novel cyclization reaction of ω-hydroxycarboxylic acids (seco-acids) using 4-trifluoromethylbenzoic anhydride (TFBA) and Lewis acid catalysts to form the corresponding lactones, we discovered a more advanced method for this transformation using 2-methyl-6-nitrobenzoic anhydride (MNBA) as a coupling reagent with nucleophilic catalysts. The latter lactonization is promoted by acyl-transfer catalysts, such as 4-(dimethylamino)pyridine (DMAP), 4-pyrrolidinylpyridine (PPY), and 4-(dimethylamino)pyridine N-oxide (DMAPO). (+)-Ricinelaidic acid lactone ((+)-2) was first synthesized by the TFBA-mediated cyclization with Lewis acid catalysts, while the threoaleuritic acid lactone (20) was alternatively synthesized by the MNBA-mediated cyclization with acyl-transfer catalysts. Using this effective lactonization technology to form the ester linkage under mild conditions, we then demonstrated the preparation of various large-, medium-, and small-sized natural and unnatural lactones including (-)-cephalosporolide D ((-)-3), (-)-octalactin A ((-)-4), (-)-octalactin B ((-)-25), 2-epibotcinolide (49), (-)- and (+)-2-hydroxytetracosanolides ((-)-77 and (+)-77), (-)- and (+)-2-hydroxy-24-oxooctacosanolides ((-)-78 and (+)-78), (-)-tetrahydrolipstatin ((-)-THL, (-)-117), and the erythromycin A skeletons 103b, 103c, 104c, and 105b. The transition structures involved in the formation of the β-lactones from the corresponding 3-hydroxycarboxylic acids were then determined using DFT calculations at the B3LYP/6-31G*//B3LYP/6-31G* level, and the reactivity of several seco-acids was successfully predicted on the basis of the calculated thermodynamic properties of the transition structures. © 2013 The Chemical Society of Japan.

Cite

CITATION STYLE

APA

Shiina, I. (2014). An adventurous synthetic journey with MNBA from its reaction chemistry to the total synthesis of natural products. Bulletin of the Chemical Society of Japan, 87(2), 196–233. https://doi.org/10.1246/bcsj.20130216

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free