Abstract
Nanopore devices are expected to advance the next-generation of nanobiodevices because of their strong sensing and analyzing capabilities for single molecules and bioparticles. However, the device throughputs are not sufficiently high. Although analytes pass through a nanopore by electrophoresis, the electric field gradient is localized inside and around a nanopore structure. Thus, analytes located far from a nanopore cannot be driven by electrophoresis. Here, we report nanopore structures for high-throughput sensing, namely, inverted pyramid (IP)-shaped nanopore structures. Silicon-based IP-shaped nanopore structures create a homogeneous electric field gradient within a nanopore device, indicating that most of the analytes can pass through a nanopore by electrophoresis, even though the analytes are suspended far from the nanopore entrance. In addition, the nanostructures can be fabricated only by photolithography. The present study suggests a high potential for inverted pyramid shapes to serve as nanopore devices for high-throughput sensing.
Author supplied keywords
Cite
CITATION STYLE
Ryuzaki, S., Matsuda, R., & Taniguchi, M. (2020). Pore structures for high-throughput nanopore devices. Micromachines, 11(10). https://doi.org/10.3390/mi11100893
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.