Nanostructural modification of PEDOT:PSS for high charge carrier collection in hybrid frontal interface of solar cells

57Citations
Citations of this article
66Readers
Mendeley users who have this article in their library.

Abstract

In this work, we propose poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) material to form a hybrid heterojunction with amorphous silicon-based materials for high charge carrier collection at the frontal interface of solar cells. The nanostructural characteristics of PEDOT:PSS layers were modified using post-treatment techniques via isopropyl alcohol (IPA). Atomic force microscopy (AFM), Fourier-transform infrared (FTIR), and Raman spectroscopy demonstrated conformational changes and nanostructural reorganization in the surface of the polymer in order to tailor hybrid interface to be used in the heterojunctions of inorganic solar cells. To prove this concept, hybrid polymer/amorphous silicon solar cells were fabricated. The hybrid PEDOT:PSS/buffer/a-Si:H heterojunction demonstrated high transmittance, reduction of electron diffusion, and enhancement of the internal electric field. Although the structure was a planar superstrate-type configuration and the PEDOT:PSS layer was exposed to glow discharge, the hybrid solar cell reached high efficiency compared to that in similar hybrid solar cells with substrate-type configuration and that in textured well-optimized amorphous silicon solar cells fabricated at low temperature. Thus, we demonstrate that PEDOT:PSS is fully tailored and compatible material with plasma processes and can be a substitute for inorganic p-type layers in inorganic solar cells and related devices with improvement of performance and simplification of fabrication process.

Cite

CITATION STYLE

APA

Olivares, A. J., Cosme, I., Sanchez-Vergara, M. E., Mansurova, S., Carrillo, J. C., Martinez, H. E., & Itzmoyotl, A. (2019). Nanostructural modification of PEDOT:PSS for high charge carrier collection in hybrid frontal interface of solar cells. Polymers, 11(6). https://doi.org/10.3390/polym11061034

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free