This study presents the seismic performance evaluation of the reinforced concrete (RC) frame designed as per Ethiopian (based on EN1998-1) and Chinese seismic codes to realize best practices within them. In the study, three-model RC frames with 4-, 8-, and 12-story are designed with the respective codes. Then, their seismic performances are evaluated using the nonlinear static (pushover) procedures of FEMA 356 and ATC 40 provisions. To validate the analysis result, dynamic nonlinear time history analysis is also made. The comparison parameters include elastic stiffness, peak strength, target displacement, and plastic hinge formation patterns in the structures. The results display many similarities in the global and local performances of the structures. Despite these, some noteworthy discrepancies are also noted. Besides, the performance point analysis revealed a significant difference in target displacement that reflects the two codes' demand spectrum essential disagreements, particularly for the period of vibration greater than 2.0's. In conclusion, the study highlighted the beneficial aspects of both codes, which will be useful for the future studies.
CITATION STYLE
Getachew, K., Chen, D. H., & Peng, G. (2020). Seismic Performance Evaluation of RC Frame Designed Using Ethiopian and Chinese Seismic Codes. Advances in Civil Engineering, 2020. https://doi.org/10.1155/2020/8493495
Mendeley helps you to discover research relevant for your work.