A simple in silico approach to generate gene-expression profiles from subsets of cancer genomics data

4Citations
Citations of this article
23Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

In biomedical research, large-scale profiling of gene expression has become routine and offers a valuable means to evaluate changes in onset and progression of diseases, in particular cancer. An overwhelming amount of cancer genomics data has become publicly available, and the complexity of these data makes it a challenge to perform in silico data exploration, integration and analysis, in particular for scientists lacking a background in computational programming or informatics. Many web inter face tools make these large datasets accessible but are limited to process large datasets. To accelerate the translation of genomic data into new insights, we provide a simple method to explore and select data from cancer genomic datasets to generate gene expression profiles of subsets that are of specific genetic, biological or clinical interest.

Cite

CITATION STYLE

APA

Khurshed, M., Molenaar, R. J., & Van Noorden, C. J. F. (2019). A simple in silico approach to generate gene-expression profiles from subsets of cancer genomics data. BioTechniques, 67(4), 172–176. https://doi.org/10.2144/btn-2018-0179

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free