Maltol improves APAP-induced hepatotoxicity by inhibiting oxidative stress and inflammation response via NF-κb and pi3k/akt signal pathways

76Citations
Citations of this article
18Readers
Mendeley users who have this article in their library.

Abstract

Maltol, a food-flavoring agent and Maillard reaction product formed during the processing of red ginseng (Panax ginseng, C.A. Meyer), has been confirmed to exert a hepatoprotective effect in alcohol-induced oxidative damage in mice. However, its beneficial effects on acetaminophen (APAP)-induced hepatotoxicity and the related molecular mechanisms remain unclear. The purpose of this article was to investigate the protective effect and elucidate the mechanisms of action of maltol on APAP-induced liver injury in vivo. Maltol was administered orally at 50 and 100 mg/kg daily for seven consecutive days, then a single intraperitoneal injection of APAP (250 mg/kg) was performed after the final maltol administration. Liver function, oxidative indices, inflammatory factors—including serum alanine and aspartate aminotransferases (ALT and AST), tumor necrosis factor α (TNF-α), interleukin-1β (IL-1β), liver glutathione (GSH), superoxide dismutase (SOD), malondialdehyde (MDA), cytochrome P450 E1 (CYP2E1) and 4-hydroxynonenal (4-HNE) were measured. Results demonstrated that maltol possessed a protective effect on APAP-induced liver injury. Liver histological changes and Hoechst 33258 staining also provided strong evidence for the protective effect of maltol. Furthermore, a maltol supplement mitigated APAP-induced inflammatory responses by increasing phosphorylated nuclear factor-kappa B (NF-κB), inhibitor kappa B kinase α/β (IKKα/β), and NF-kappa-B inhibitor alpha (IκBα) in NF-κB signal pathways. Immunoblotting results showed that maltol pretreatment downregulated the protein expression levels of the B-cell-lymphoma-2 (Bcl-2) family and caspase and altered the phosphorylation of phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) in a dose-dependent manner. In conclusion, our findings clearly demonstrate that maltol exerts a significant liver protection effect, which may partly be ascribed to its anti-inflammatory and anti-apoptotic action via regulation of the PI3K/Akt signaling pathway.

Cite

CITATION STYLE

APA

Wang, Z., Hao, W., Hu, J., Mi, X., Han, Y., Ren, S., … Li, W. (2019). Maltol improves APAP-induced hepatotoxicity by inhibiting oxidative stress and inflammation response via NF-κb and pi3k/akt signal pathways. Antioxidants, 8(9). https://doi.org/10.3390/antiox8090395

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free