Innovative Real-Time Flow Sensor Using Detergent-Free Complex Emulsions with Dual-Emissive Semi-Perfluoroalkyl Substituted Α-Cyanostilbene

0Citations
Citations of this article
7Readers
Mendeley users who have this article in their library.

Abstract

In this study, the potential of complex emulsions is investigated as transducers in sensing applications. Complex emulsions are stabilized without external detergents by developing a novel α-cyanostilbene substituted with PEG and semi-perfluoroalkyl chain (CNFCPEG). CNFCPEG exhibits unique variable emission properties depending on its aggregation state, allowing dual blue and green emissions in complex emulsions with hydrocarbon-in-fluorocarbon-in-water (H/F/W) morphology. The green excimer emissions result from the self-assembly of CNFCPEG at the fluorocarbon/water interface, while the blue emission observed is due to aggregation in the organic phase. A novel flow-injection method is developed by incorporating complex emulsions with CNFCPEG into multiple-well flow chips (MWFC). Iodine is successfully detected in a mobile aqueous solution by monitoring morphology changes. The findings demonstrate that self-stabilized complex emulsions with MWFC hold great promise for real-time sensing without costly instruments.

Cite

CITATION STYLE

APA

Rakesh, N., Tu, H. L., Chang, P. C., Gebreyesus, S. T., & Lin, C. J. (2023). Innovative Real-Time Flow Sensor Using Detergent-Free Complex Emulsions with Dual-Emissive Semi-Perfluoroalkyl Substituted Α-Cyanostilbene. Advanced Science, 10(31). https://doi.org/10.1002/advs.202304108

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free