Quantitative Trait Loci (QTL) Underlying Biomass Yield and Plant Height in Switchgrass

  • Serba D
  • Daverdin G
  • Bouton J
  • et al.
N/ACitations
Citations of this article
36Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Switchgrass (Panicum virgatum L.) biomass yield and feedstock quality improvement are priority research areas for bioenergy feedstock development. Identification of quantitative trait loci (QTL) underlying these traits and of trait-linked markers for application in marker-assisted selection (MAS) is of paramount importance in facilitating switchgrass breeding. Detection of QTL for biomass yield and plant height was conducted on parental linkage maps constructed using a heterozygous pseudo-F1 population derived from a cross between lowland Alamo genotype AP13 and upland Summer genotype VS16. QTL analysis was performed with composite interval mapping. Four QTL for biomass yield and five QTL for plant height were identified using best linear unbiased predictors across ten and eight environments, respectively. The phenotypic variability explained (PVE) by QTL detected in the across environments analysis ranged from 4.9 to 12.4 % for biomass yield and 5.1 to 12.0 % for plant height. A total of 34 and 38 main effect QTL were detected for biomass yield and plant height, respectively, when data from each environment were analyzed separately. The PVE by individual environment QTL ranged from 3.3 to 15.3 % for biomass yield and from 4.3 to 17.4 % for plant height. In addition, 60 and 51 epistatic QTL were detected for biomass yield and plant height, respectively. Significant QTL by environment interactions were detected for QTL mapped in eight genomic regions for each of the two traits. Seven QTL affected both traits and may represent pleiotropic loci. Overall, 11 genomic regions were identified that were important in controlling biomass yield and/or plant height in switchgrass. The markers linked to the main effect and epistatic QTL may be used in MAS to maximize selection gain in switchgrass breeding, leading to a faster development of better biofuel cultivars.

Cite

CITATION STYLE

APA

Serba, D. D., Daverdin, G., Bouton, J. H., Devos, K. M., Brummer, E. C., & Saha, M. C. (2015). Quantitative Trait Loci (QTL) Underlying Biomass Yield and Plant Height in Switchgrass. BioEnergy Research, 8(1), 307–324. https://doi.org/10.1007/s12155-014-9523-8

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free