The human folate receptor (hFR) is a glycosylphosphatidylinositol (GPI) linked plasma membrane protein that mediates delivery of folates into cells. We studied the sorting of the hFR using transfection of the hFR cDNA into MDCK cells. MDCK cells are polarized epithelial cells that preferentially sort GPI-linked proteins to their apical membrane. Unlike other GPI-tailed proteins, we found that in MDCK cells, hFR is functional on both the apical and basolateral surfaces. We verified that the same hFR cDNA that transfected into CHO cells produces the hFR protein that is GPI-linked. We also measured the hFR expression on the plasma membrane of type III paroxysmal nocturnal hemoglobinuria (PNH) human erythrocytes. PNH is a disease that is characterized by the inability of cells to express membrane proteins requiring a GPI anchor. Despite this defect, and different from other GPI-tailed proteins, we found similar levels of hFR in normal and type III PNH human erythrocytes. The results suggest the hypothesis that there may be multiple mechanisms for targeting hFR to the plasma membrane.
CITATION STYLE
Kim, C. H., Park, Y. S., Chung, K. N., & Elwood, P. C. (2004). Sorting of the human folate receptor in MDCK cells. Journal of Biochemistry and Molecular Biology, 37(3), 362–369. https://doi.org/10.5483/bmbrep.2004.37.3.362
Mendeley helps you to discover research relevant for your work.