Silicon(i) chemistry: the NHC-stabilised silicon(i) halides Si2X2(Idipp)2 (X = Br, I) and the disilicon(i)-iodido cation [Si2(I)(Idipp)2]+

28Citations
Citations of this article
15Readers
Mendeley users who have this article in their library.

Abstract

An efficient method for the synthesis of the NHC-stabilised Si(i) halides Si2X2(Idipp)2 (2-X, X = Cl, Br, I; Idipp = C[N(C6H3-2,6-iPr2)CH]2) was developed, which involves the oxidation of Si2(Idipp)2 (1) with 1,2-dihaloethanes. Halogenation of 1 is a diastereoselective reaction leading exclusively to a racemic mixture of the RR and SS enantiomers of 2-X. Compounds 2-Br and 2-I were characterised by single-crystal X-ray crystallography and multinuclear NMR spectroscopy, and their electronic structures were analysed by quantum chemical methods. Dynamic NMR spectroscopy unraveled a fluxional process of 2-Br and 2-I in solution, which involved a hindered rotation of the NHC groups about the Si-CNHC bonds. Iodide abstraction from 2-I by [Li(Et2O)2.5][B(C6F5)4] selectively afforded the disilicon(i) salt [Si2(I)(Idipp)2][B(C6F5)4] (3). X-ray crystallography and variable-temperature NMR spectroscopy of 3 in combination with quantum chemical calculations shed light on the ground-state geometric and electronic structure of the [Si2(I)(Idipp)2]+ ion, which features a Si=Si bond between a trigonal planar coordinated SiII atom with a Si-I bond and a two-coordinate Si0 center carrying a lone pair of electrons. The dynamics of the [Si2(I)(Idipp)2]+ ion were studied in solution by variable-temperature NMR spectroscopy and they involve a topomerisation, which proceeds according to quantum theory via a disilaiodonium intermediate ("π-bonded" isomer) and exchanges the two heterotopic Si sites.

Cite

CITATION STYLE

APA

Arz, M. I., Geiß, D., Straßmann, M., Schnakenburg, G., & Filippou, A. C. (2015). Silicon(i) chemistry: the NHC-stabilised silicon(i) halides Si2X2(Idipp)2 (X = Br, I) and the disilicon(i)-iodido cation [Si2(I)(Idipp)2]+. Chemical Science, 6(11), 6515–6524. https://doi.org/10.1039/c5sc02681d

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free