Prolactin upregulates sphingosine kinase-1 expression and activity in the human breast cancer cell line MCF7 and triggers enhanced proliferation and migration

62Citations
Citations of this article
26Readers
Mendeley users who have this article in their library.

Abstract

Sphingosine kinases (SK) catalyze the formation of sphingosine-1-phosphate (S1P) which plays a crucial role in cell growth and survival. Here, we show that prolactin (PRL) biphasically activates the SK-1, but not the SK-2 subtype, in the breast adenocarcinoma cell-line MCF7. A first peak occurs after minutes of stimulation and is followed by a second delayed activation after hours of stimulation. A similar biphasic effect on SK-1 activity is seen for 17β-estradiol (E2). The delayed activation of SK-1 derives from an upregulated mRNA and protein expression and is due to increased SK-1 promoter activity and mechanistically involves STAT5 activation as well as protein kinase C and the classical mitogen-activated protein kinases. Furthermore, glucocorticoids also block both hormone-induced SK-1 expression and activity. Functionally, long-term stimulation of MCF7 cells with PRL or E2 is well known to trigger increased cell proliferation and migration. Both hormone-induced cell responses critically involve SK-1 activation since the depletion of SK-1, but not SK-2, by siRNA transfection abolishes the hormone-induced cell proliferation and migration. In summary, our data show that PRL and E2 cause a pronounced delayed SK-1 activation which is due to increased gene transcription, and critically determines the capability of cells to grow and move. Thus, the SK-1 may represent a novel attractive target for anti-tumor therapy. © 2007 Society for Endocrinology.

Cite

CITATION STYLE

APA

Döll, F., Pfeilschifter, J., & Huwiler, A. (2007). Prolactin upregulates sphingosine kinase-1 expression and activity in the human breast cancer cell line MCF7 and triggers enhanced proliferation and migration. Endocrine-Related Cancer, 14(2), 325–335. https://doi.org/10.1677/ERC-06-0050

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free