Abstract
Reservoir hydropower offers a compelling combination of stability and flexibility services for modern water and power grids. However, its operating flexibility is poorly characterized in energy system planning, missing opportunities to cost-effectively uptake variable renewable energy (VRE) for a clean energy transition. In this study, we have developed a fully coupled reservoir operation and energy expansion model to quantify the economic and environmental benefits attained from adaptive hydropower operation in a high VRE future. Our case study of the China Southern Power Grid reveals that, in a 2050 net-zero grid, simply adapting hydropower operations to balance VRE can reduce 2018–2050 total system costs by 7% (that is, US$28.2 billion) and simultaneously save 123.8 km3 of water each year (that is, more than three times the reservoir capacity of the Three Gorges Dam). These vast, yet overlooked, cost- and water-saving potentials highlight the importance of incorporating balancing-oriented hydropower operation into future pathways to jointly decarbonize and secure power and water grids.
Cite
CITATION STYLE
Liu, Z., & He, X. (2023). Balancing-oriented hydropower operation makes the clean energy transition more affordable and simultaneously boosts water security. Nature Water, 1(9), 778–789. https://doi.org/10.1038/s44221-023-00126-0
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.