Abstract
© 2017, AlphaMed Press. All rights reserved. Background. Pediatric brain tumors are the leading cause of death for children with cancer in the U.S. Incorporating nextgeneration sequencing data for both pediatric low-grade (pLGGs) and high-grade gliomas (pHGGs) can informdiagnostic, prognostic, and therapeutic decision-making. Materials and Methods. We performed comprehensive genomic profiling on 282 pediatric gliomas (157 pHGGs, 125 pLGGs), sequencing 315 cancer-related genes and calculating the tumor mutational burden (TMB; mutations per megabase [Mb]). Results. In pLGGs, we detected genomic alterations (GA) in 95.2% (119/125) of tumors. BRAF was most frequently altered (48%; 60/125), and FGFR1 missense (17.6%; 22/125), NF1 loss of function (8.8%; 11/125), and TP53 (5.6%; 7/125) mutations were also detected. Rearrangements were identified in 35% of pLGGs, including KIAA1549-BRAF, QKI-RAF1, FGFR3-TACC3, CEP85L-ROS1, and GOPC-ROS1 fusions. Among pHGGs, GA were identified in 96.8% (152/157). The genes most frequently mutated were TP53 (49%; 77/157), H3F3A (37.6%; 59/157), ATRX (24.2%; 38/157), NF1 (22.2%; 35/157), and PDGFRA (21.7%; 34/157). Interestingly, most H3F3A mutations (81.4%; 35/43) were the variant K28M.Midline tumor analysis revealed H3F3A mutations (40%; 40/100) consisted solely of the K28M variant. Pediatric high-grade gliomas harbored oncogenic EML4-ALK, DGKB-ETV1, ATG7-RAF1, and EWSR1-PATZ1 fusions. Six percent (9/157) of pHGGs were hypermutated (TMB >20 mutations perMb; range 43–581 mutations perMb), harboring mutations deleterious for DNA repair in MSH6, MSH2, MLH1, PMS2, POLE, and POLD1 genes (78% of cases). Conclusion. Comprehensive genomic profiling of pediatric gliomas provides objective data that promote diagnostic accuracy and enhance clinical decision-making. Additionally, TMB could be a biomarker to identify pediatric glioblastoma (GBM) patients who may benefit from immunotherapy.
Cite
CITATION STYLE
Johnson, A., Severson, E., Gay, L., Vergilio, J.-A., Elvin, J., Suh, J., … Ramkissoon, S. H. (2017). Comprehensive Genomic Profiling of 282 Pediatric Low- and High-Grade Gliomas Reveals Genomic Drivers, Tumor Mutational Burden, and Hypermutation Signatures. The Oncologist, 22(12), 1478–1490. https://doi.org/10.1634/theoncologist.2017-0242
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.